Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
PRIMESFROM(s(s(0)))
PRIMESSIEVE(from(s(s(0))))
FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
PRIMESFROM(s(s(0)))
PRIMESSIEVE(from(s(s(0))))
FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
The remaining pairs can at least be oriented weakly.

SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
Used ordering: Polynomial interpretation [25,35]:

POL(SIEVE(x1)) = 4   
POL(cons(x1, x2)) = 2 + x_2   
POL(if(x1, x2, x3)) = 0   
POL(filter(x1, x2)) = 0   
POL(s(x1)) = 0   
POL(divides(x1, x2)) = 0   
POL(sieve(x1)) = 2   
POL(FILTER(x1, x2)) = (2)x_2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(SIEVE(x1)) = 1/4 + (4)x_1   
POL(cons(x1, x2)) = 2 + (4)x_1 + x_2   
POL(if(x1, x2, x3)) = 0   
POL(filter(x1, x2)) = 0   
POL(s(x1)) = 0   
POL(divides(x1, x2)) = 0   
POL(sieve(x1)) = 1/2 + x_1   
POL(FILTER(x1, x2)) = 4 + (4)x_2   
The value of delta used in the strict ordering is 9/4.
The following usable rules [17] were oriented:

sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(X) → FROM(s(X))

The TRS R consists of the following rules:

primessieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.